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i I 

ABSTRACT 

An approximate solution is presented for determining transient 

temperature distributions and ablation rates for solid spheres of low thermal 

conductivity ^nd constant thermal properties, subjected to point symmetric 

aerodynamic heat inputs.  A short time solution for the temperature which 

is valid prior to ablation, is developed by use of Laplace transr(.rms.  The 

ablation solution is derived by approximation of the radial temperature pro- 

file by an exponential function and utilization of the heat balance technique. 

This results in a second-order, nonlinear, (»»-dinary differential equation 

for the position of the ablating surface. 

Results of the numerical integration of the approximate solutions 

are compared with experimental data obtained at the stagnation point of a 

Plexiglas nemisphere tested under hypersonic flow conditions.  A discussion 

of the techniques employed, as well as the comparison with experimental data, 

appear in the body of this report. 
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SYMBOLS 

a initial radius of sphere 

c specific heat 

h heat transfer coefficient 

k thermal conductivity 

L heat of sublimation or melting 

P stagnation pressure 

0 constant heat flux 

r radial coordinate 

r radius of ablating heated surface 

r' nondimensional radial coordinate, r/a 

t time 

t me 11 t i me 
m 

2 
l' nondimensional time, nt/a 

T temperature 

T heated surface temperature 
a 

T. initial temperature 

T melt or sublimation temperature 

T radial temperature profile from pre-melt analysis 

T stagnation temperature of flow field 

T nondimensional temperature, (T - 1.)/{T    -  T.) 

u transformed variable, rT or r(T - T) 

u Laplace variable 

UL 



I V 

V       nondimensional heat transfer parameter, aQ. /pin 

K       thermal diffusivity 

Tj       nondimensional ablation radius, r /a 
s 

cp       nondimensioivii material physical parameter, 

p       densi ty of soli d 

m i 

PLR 

*(t " t ) 
nondimensional time, 

m 
2 

, «       r ah - k 
gi,       nondimensional heat transfer parameter, —-—— 

(')      indicates differentiation with respect to T 



1. 

INTRODUCTION 

The high inputs and aerodynamic forces encountered by a space 

vehicle upon re-entry into the atmosphere have created numerous areas of 

interest for the scientist and engineer. One area of recent emphasis has 

been ablation, or, the utilization of the latent heat of vaporization or 

sublimation of the material in order to reduce the heat input to the 

vehicle structure. 

Considerable research has been performed in problems of transient 

temperature distributions in bodies undergoing phase changes. References 

[1] through [J],   together with the lists of references therein, contain a 

fairly comprehensive bibliography of this subject. 

The current research was motivated by the desire to obtain a pre- 

diction of ablation rates and temperature profiles for thick-walled hemispheres 

of low thermal conductivity subjected to aerodynamic heat inputs. Tests of 

Plexiglas and Nylon hemispherical models are now being conducted in the hyper- 

sonic tunnel of the Polytechnic Institute of Brooklyn. The experimental 

results available on one of the models are compared to the present theory. 

A more extensive comparison will be the subject of a future report. 

Sn this report an approximate theoretical method is developed for 

determining transient temperature distributions, together with ablation rates 

for solid spheres of low thermal conductivity and constant thermal properties 

subjected to point symmetric aerodynamic heat inputs. Since the high thermal 

input conditions encountered in re-entry produce steep radial temperature gra- 

dients at the heated surface of a material of low thermal conductivity, the 

li 



material temperature, at a short distance from the heated surface is essen- 

tially the same as the initial material temperature. Consequently, the solu- 

tion for a spherical shell of sufficient thickness may be approximated by 

the solution for a solid sphere. The problem as developed in this report 

is divided into two parts:  (1) the pre-melt solution, and (2) the ablation 

solution. 

The pre-melt solution utilizes Laplace transformations which re- 

sult in a short-time solution to the heat conduction equation [8]. This 

solution is considered valid until the sublimation or melting temperature 

of the body is reached on the heated surface. The determination of the 

time at which the above condition occurs is of primary importance in 

correlating experimental ablation data with the ablation theory. 

The ablation solution is approximated by employing the Goodman 

heat balance technique [2]. An exponential temperature profile is assumed 

in the unablated sphere and substituted into the heat conduction equation. 

The resulting equation is integrated over the region of the solid, and 

yields an ordinary, nonlinear, second-order, differential equation relating 

the ablation depth to time. The latter equation is solved by numerical 

techniques. 

The ablation solution, used together with the pre-melt solution, 

provides a simple and reasonable approximation for the ablation of low 

conductivity spherical shells. 
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PRE-HELT SOLUTION 

A short-time solution for the temperature distribution in a solid 

sphere subjected to a point symmetric aerodynamic heat input is obtained 

by utilizing Laplace transformations. The appropriate form of the heat 

conduction equation is 

or 

with the conditions 

h(T - T ) = k(oT/ör)p (2a) 
s   a r * a 

T(r,0) = T. (2b) 

T(0,t) is finite                              (2c) 

where the sumbols are defined as 

a initial radius of sphere 

h heat transfer coefficient 

k thermal conductivity 

r radial coordinate 

t time 

y 



k. 

T temperature 

T heated surface temperature 

T. initial temperature of material 

T stagnation temperature of flow field 

K thermal diffusivity 

Equations (1) can be transformed into a more convenient form by 

the substitution 

u = r(Ts - T) 

The result is 

du    d u 

* = " 8r
2 

and equations (2) become 

0 < r < a (3) 

|» + * u = 0 ;      at r = a (4a) or  a 

u(r,0) = r(Ts - Tj) (kb) 

u(0,t) = 0 (4c) 

where u> = (ah - k)/k. 



5. 

The Laplace transformation is now applied to Eq. (3) 

o    dr      o 

and by using Eq. (4b), the resulting subsidiary equation is 

A*"       *_    (T - T.)r 
—- - q u *  , (5) 
dr H 

where 

2   , 
q - P/K . 

Equations (4a) and (4c) become 

d^- + ^ü"=0  ,    at r = a (6a) ar  a 

u ■ 0       ,    at r = 0 . (6b) 

A general solution to Eq. (5) is 

-or (J<  " T|)r 

Ü = C,eqr ♦ C2e qr +  5 2 ' 
q H 

where C, and C„ are constants. These constants are evaluated by applying 



6. 

Eqs. (6a) and (6b). The result in series form is as follows: 

_ (VTi)r _ °^)(VT1) Y , ,*n (q-u/a)n  f-q[ (2*1 )•-■■] -q[ (Zn+Da+r]! p p     io     (<w+1 x ; 

(7) 

For a short-time solution, Eq. (7) may be truncated after the n - 0 term. 

For the range of parameters considered in this report the higher order terms 

oe Eq. (7) can be shown to be negligible. 

The inverse transformation of Eq. (7) for n = 0 is 

where 

j . i_ [Juki {erfc ipJl . erfc LtlL 

exp n(l-r') + /t'    erfc   -^-E—- + ult7 (8) {li(l-r') + p,2t'J erfc [-^i— + uft7] 

+ «p[»(1 + r«) + u2f] erfc f1^1 + up]} 

1    "    2 
a 

r' = r/a 

T - T. 
T- T    - T. 

s        i 



7. 

Equation (8) represents the short-time solution for the temperature-time 

history at any point on or within the sphere. 

In order to correlate the experimental ablation data with the 

ablation theory, the time (t ) at which the melting temperature (T ) of 

the material is initially reached on the heated surface must be deter- 

mined. Surface temperatures versus time for various values of the heat input 

parameter (u>) have been calculated, using Eq. (8), and the results are 

shown in Fig. 1. For a given material and heat input condition Fig. 1 

can be used to determine the melting time (t ). 

Once t has been determined, the radial temperature profile at 

t » t can be calculated from Eq. (8). The determination of this profile 

is not essential for the solution of the ablation problem, but it must be 

shown here as a justification for the simplified profile chosen for the 

ablation theory. One such profile is presented in Fig. 2 as a representative 

case. 

ÜL 
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ABLATION SOLUTION 

The transient temperature distributions and ablation rates for 

the solid sphere are approximated by employing the heat balance technique 

due to Goodman [2]. The solution is considered valid from the time 

melting commences on the heated surface to the time that the predicted 

temperature increase at the center of the sphere ceases to be a negligible 

percentage of (T - T.). The initial assumptions made in this analysis 

are as follows: 

a. the heated surface remains at the melt or sublimation 

temperature (T ). 
m 

b. the melt or products of sublimation are immediately removed 

upon formation. 

c. the thermal properties of the solid are independent of 

temperature. 

d. the heat flux (Q. )remains constant . 

The appropriate form of the heat conduction equation is 

21       ULI     2 3T~|       0 < r < r  (t) 
8t" V 7örJ; t>t" 

s (9) 
t > t —   m 

The function r (t) denotes the time-dependent radial coordinate 

of the receding outer surface of the sphere. 

1 In the case of aerodynamic heating this assumption, together with the assump- 
tion that the heated surface remains at a constant temperature, is analogous 
to assuming that the heat transfer coefficient (h) is constant. 
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The boundary and initial conditions to be satisfied are 

T(rs,t) = Tm (10a) 

T(r,tm)»To(r,tm) (10b) 

T(0,t) is finite (10c) 

rs(tj = a (lOd) 

where T (r,t ) is the temperature profile at time (t ) determined from the 

pre-melt analysis, and p and L are the density and heat of sublimation of 

the material, respectively. 

Equation (9) is converted to a more convenient form by applying 

the transformation 

u = rT 

whereupon 

&-H& 0<r<rs,t>tm     . (..) 
dr 



integrating Eq. (11) over the volume of the solid, 

r r   ? 
rs du .       r    du A_ 

o o  or 

or 

10. 

dt 

*r dr 

o, t V1 
(12) 

Reintroducing Tr for u, Eq. (12) may be expressed in the foi 

dr 

ilo Trdr - rsT<v<> 5^- * [',® ,+ T(v«> - T(0't)] (13) 

Condition (10b) is now satisfied approximately by assuming the 

temperature profile 

T - T. ; rQo + pL(drs/dt) 
= ^P M       k(T -T.) T - T. 

m   i 
(HO 

m i 

This temperature profile also satisfies conditions (10a), (10c) and (lOe). 

Substitution of (14) into (13) yields the following equation: 

[2(1 - e'a)  - cr(l + e"*)" 
d2r 

dt 

r dr 

■ pi 'r'X - VK«♦ « • e"°>]♦ [• - « - •"">] (i>3r} os) 

** 



11. 

where 

[0^ + pL(dr$/dt)]r( 

It is now assumed that or is sufficiently large, such that e «I. 

Neglecting the exponential terms compared to unity in Eq. (15), the resulting 

equation is 

L (T -T.) M  . _       r       dr -,  d2r 

Equation (16)  is non-dimensionalized by the transformation 

n(t-t) m 
T-          2 

a 

I 
i 

D(T) - rs/a  . 

The result • 
IS 

• • (Y ♦ Ti)2      r r 
n = - i—!—R 

<P [H(Y+i))-2q>] 
{q[(Y + TO   -ofl] + T1(Y + T0[y +  (1  + <p)T|]}        (17) 

where 



12. 

v " pu 

k<Tm - V 
put 

*"« 

dT 

A stepwise numerical integration procedure is used for the solution of 

Eq. (17); starting with the initial conditions on T] and T| . It can he 

shown from condition (lOd) that T| at T=0 is unity, and for continuity of 

the heat flux at the so-called melt time, that T\ at T = 0 is zero. These 

initial values of T\ and 1\ are now used to find T) (0) from Eq. (17)* A 

value of the time interval (AT = T« - T.) is chosen, and the following 

Taylor series expansions are used to proceed: 

T1(T2) = H(T|) + TKT^AT +*T((T1) *$- 

(18) 

T1(T2) = T1(T,) + li (T,)^ 

The values of T1(T2) and T)(TL) thereby obtained are substituted 

into Eq. (17) to obtain T](T2). This process is then repeated for each suc- 

cessive time interval. 

The resulting time history of the ablating surface (11 vs T) for 

various values of the heat input parameter (v), and two values of the 

ÄJ 



13. 

material parameter (q>), are shown in Figs. 3 and k.    The corresponding time 

histories of the ablation rates (1) vs T) are shown in Figs. 5 and 6. The 

values of <p used correspond to the physical properties of Plexiglas 

(<p - 0.511) and Nylon (9 = 0.108). 

The values of the ablation rate and ablation radius so deter- 

mined can be substituted Into Eq. (]k)  to yield the temperature-time 

history at any point within the body. 

f 



]k. 

COMPARISON WITH EXPERIMENT 

The theoretical results of the preceding sections are now com- 

pared with an experimental result obtained at the stagnation point of a Plexi- 

glas hemisphere tested in the hypersonic tunnel of the Polytechnic Institute 

of Brooklyn. The shroud technique was utilized to produce pressure distri- 

butions and heat transfer rates corresponding to high speed re-entry of the 

hemisphere. 

Dimensions of Model 

Outer Radius, a 

Inner Radius, b 

Test Conditions 

Stagnation Pressure, P 

Stagnation Temperature, T 

Heat Transfer Coefficient at Stagnation Point, h 

Initial Temperature of Model, T. 

Duration of Test Run, t. 

Ablation at Stagnation Point, a - r 

Assumed Physical Properties 

Sublimation Temperature, Jr 

Diffusivity, H 

Conductivity, k 

Density, p 

Specific Heat, c 

Heat of Sublimation, L 

m 

3-875 «n 

2.875 in 

1.67 x ]Q~k  in2/sec 

3.61 X 10 

7k.k  lb/ft 

-k  BTU in 

3 
Ft2sec°R 

0.35 BTU/lbuR 

450 BTU/lb 

19.5 psia 

i700°R 

BTU 

Ft' sec R 

5M)°R 

37 sec 

0.053 in : 

1200°R 
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Pre-Helt Solution 

From the above data the parameters necessary to use Fig. 2 can 

be calculated. These are 

ah - k ,Cc u. = —r = 165 

and 

s   I 

From Fig. 2, t' = 3-30 x 10'5 , 3  ' m ' 

and hence 

«2t. 
t =   =2.06 seconds 
m   H 

Aibation Solution 

The ablation parameters, <p and y,  calculated from the given data 

are 

«p = 0.511 

Y = 62.8 

The non-dimensional time corresponding to the conclusion of the test (T,) 

can be determined from the given data and from the pre-melt solution. That is 

1* 
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T, = 
K(tf"t-)   • ~  .. ..* 

f    2 = 3.78 x 10 

The total ablation depth predicted by the theory can now be 

determined by using Fig. 3- The result is 

a - r = 0.047 in. 

The actual ablation depth measured at the stagnation point is 0.053 in. 

and hence the theoretical result is within 12% of the experimental result, 
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FIG. 5 
ABLATION   RATE  VERSUS  TIME, </>-0.511 
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